首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   11篇
  国内免费   6篇
测绘学   15篇
大气科学   28篇
地球物理   79篇
地质学   211篇
海洋学   47篇
天文学   39篇
自然地理   30篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2016年   17篇
  2015年   11篇
  2014年   22篇
  2013年   25篇
  2012年   23篇
  2011年   15篇
  2010年   21篇
  2009年   15篇
  2008年   15篇
  2007年   8篇
  2006年   18篇
  2005年   18篇
  2004年   9篇
  2003年   15篇
  2002年   9篇
  2001年   11篇
  2000年   8篇
  1999年   5篇
  1998年   8篇
  1997年   4篇
  1995年   4篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1975年   6篇
  1974年   2篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
  1966年   2篇
  1955年   2篇
排序方式: 共有449条查询结果,搜索用时 187 毫秒
441.
Assessing streamflow sensitivity to variations in glacier mass balance   总被引:1,自引:0,他引:1  
We examine long-term streamflow and mass balance data from two Alaskan glaciers located in climatically distinct basins: Gulkana Glacier, a continental glacier located in the Alaska Range, and Wolverine Glacier, a maritime glacier located in the Kenai Mountains. Over the 1966–2011 study interval, both glaciers lost mass, primarily as a result of summer warming, and streamflow increased in both basins. We estimate total glacier runoff via summer mass balance and quantify the fraction of runoff related to annual mass imbalances. In both climates, annual (net) mass balance contributes, on average, less than 20 % of total streamflow, substantially less than the fraction related to summer mass loss (>50 %), which occurs even in years of glacier growth. The streamflow fraction related to changes in annual balance increased significantly only in the continental environment. In the maritime climate, where deep winter snowpacks and frequent rain events drive consistently high runoff, the magnitude of this streamflow fraction was small and highly variable, precluding detection of any existing trend. Furthermore, our findings suggest that glacier mass change is likely to impact total basin water yield, timing of runoff and water quality in the continental environment. However, the impacts of maritime glacier change appear more likely to be limited to water quality and runoff timing.  相似文献   
442.
A rotating, acoustic gas bubble detector, BOB (Bubble OBservatory) module was deployed during two surveys, conducted in 2009 and 2011 respectively, to study the temporal variations of gas emissions from the Marmara seafloor, along the North Anatolian Fault zone. The echosounder mounted on the instrument insonifies an angular sector of 7° during a given duration (of about 1 h). Then it rotates to the next, near-by angular sector and so forth. When the full angular domain is insonified, the “pan and tilt system” rotates back to its initial position, in order to start a new cycle (of about 1 day). The acoustic data reveal that gas emission is not a steady process, with observed temporal variations ranging between a few minutes and 24 h (from one cycle to the other). Echo-integration and inversion performed on the acoustic data as described in the companion paper of Leblond et al. (Mar Geophys Res, 2014), also indicate important variations in, respectively, the target strength and the volumetric flow rates of individual sources. However, the observed temporal variations may not be related to the properties of the gas source only, but reflect possible variations in sea-bottom currents, which could deviate the bubble train towards the neighboring sector. During the 2011 survey, a 4-component ocean bottom seismometer (OBS) was co-located at the seafloor, 59 m away from the BOB module. The acoustic data from our rotating, monitoring system support, but do not provide undisputable evidence to confirm, the hypothesis formulated by Tary et al. (2012), that the short-duration, non-seismic micro-events recorded by the OBS are likely produced by gas-related processes within the near seabed sediments. Hence, the use of a multibeam echosounder, or of several split beam echosounders should be preferred to rotating systems, for future experiments.  相似文献   
443.
Species distribution models (SDM) are commonly used to provide information about species ranges or extents, and often are intended to represent the entire area of potential occupancy or suitable habitat in which individuals occur. While SDMs can provide results over various geographic extents, they normally operate within a grid and cannot delimit distinct, smooth boundaries. Additionally, there are instances where a zone of primary occupancy (i.e., a mostly continuous region where species exists, excluding outliers) is better suited for particular analyses, such as when examining source/sink population dynamics or modeling movement into new habitats. We present a semi-automated method to delineate a generalized species boundary (GSB) from SDM output, which provides a practical alternative to digitizing. This preliminary boundary is then manually updated based on inventory data and historical ranges. We used the method to generate contemporary boundaries for 132 tree species of the eastern United States, which are complementary to the ranges generated by Elbert Little for North America during the 1970s, but are not replacements. The methods we present can broadly be applied to other grid-based SDM to generate GSBs.  相似文献   
444.
The present numerical study, which is an extension of our previous numerical analysis on cracking processes of a single pre-existing flaw, focuses on the coalescence of two pre-existing parallel open flaws in rock subjected to a uniaxial compressive loading. To facilitate a systematic investigation, the arrangements of the flaw pair are classified into 11 categories. Simulations engaging AUTODYN are conducted on each category. The numerical results are compared with some published physical experimental test results. Eleven typical coalescence patterns are obtained, which are in good agreement with the experimental results, which include two coalescence patterns obtained in flaw pair arrangements (II) and (VIII″) not being reported in previous studies. The information gathered in the simulations helps identify the type (tensile/shear) of each crack segment involved in the coalescence. Most of the coalescence cracks initiate at or around the flaw tips, except those in flaw pair arrangements (II) and (IX′) with a very short ligament length, in which the coalescence cracks initiate on the flaw surfaces away from the flaw tip regions. Based on the numerical simulation results, the properties of the 11 coalescence patterns are obtained. Except those in flaw pair arrangements (II) and (IX′), the other coalescence patterns can be interpreted with respect to the basic crack types—tensile wing crack, horsetail crack and anti-wing crack. In addition, based on the type of crack segments involved in coalescence, namely tensile and shear, the coalescence can be classified into T mode (tensile mode), S mode (shear mode) and TS mode (mixed tensile–shear mode).  相似文献   
445.
In oil field development, the optimal location for a new well depends on how it is to be operated. Thus, it is generally suboptimal to treat the well location and well control optimization problems separately. Rather, they should be considered simultaneously as a joint problem. In this work, we present noninvasive, derivative-free, easily parallelizable procedures to solve this joint optimization problem. Specifically, we consider Particle Swarm Optimization (PSO), a global stochastic search algorithm; Mesh Adaptive Direct Search (MADS), a local search procedure; and a hybrid PSO–MADS technique that combines the advantages of both methods. Nonlinear constraints are handled through use of filter-based treatments that seek to minimize both the objective function and constraint violation. We also introduce a formulation to determine the optimal number of wells, in addition to their locations and controls, by associating a binary variable (drill/do not drill) with each well. Example cases of varying complexity, which include bound constraints, nonlinear constraints, and the determination of the number of wells, are presented. The PSO–MADS hybrid procedure is shown to consistently outperform both stand-alone PSO and MADS when solving the joint problem. The joint approach is also observed to provide superior performance relative to a sequential procedure.  相似文献   
446.
Uncertainty quantification for subsurface flow problems is typically accomplished through model-based inversion procedures in which multiple posterior (history-matched) geological models are generated and used for flow predictions. These procedures can be demanding computationally, however, and it is not always straightforward to maintain geological realism in the resulting history-matched models. In some applications, it is the flow predictions themselves (and the uncertainty associated with these predictions), rather than the posterior geological models, that are of primary interest. This is the motivation for the data-space inversion (DSI) procedure developed in this paper. In the DSI approach, an ensemble of prior model realizations, honoring prior geostatistical information and hard data at wells, are generated and then (flow) simulated. The resulting production data are assembled into data vectors that represent prior ‘realizations’ in the data space. Pattern-based mapping operations and principal component analysis are applied to transform non-Gaussian data variables into lower-dimensional variables that are closer to multivariate Gaussian. The data-space inversion is posed within a Bayesian framework, and a data-space randomized maximum likelihood method is introduced to sample the conditional distribution of data variables given observed data. Extensive numerical results are presented for two example cases involving oil–water flow in a bimodal channelized system and oil–water–gas flow in a Gaussian permeability system. For both cases, DSI results for uncertainty quantification (e.g., P10, P50, P90 posterior predictions) are compared with those obtained from a strict rejection sampling (RS) procedure. Close agreement between the DSI and RS results is consistently achieved, even when the (synthetic) true data to be matched fall near the edge of the prior distribution. Computational savings using DSI are very substantial in that RS requires \(O(10^5\)\(10^6)\) flow simulations, in contrast to 500 for DSI, for the cases considered.  相似文献   
447.
448.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
449.
Integrated studies based on tectonic, seismotectonic and geomorphological analyses indicate that Normandy (northwest France) has been an active area during the Quaternary. Topography and landform discontinuities reflect the dislocation and differential uplift of a late Cenozoic platform. The tectonic activity is represented by (i) active faults, indicated by linear scarps and seismic activity, (ii) offsetting of pre‐existing surfaces, (iii) Plio‐Pleistocene sedimentation restricted within narrow subsiding zones, and (iv) morphometric properties of drainage basins that indicate zones of differential uplift. The inferred strain pattern involves (i) a shortening direction that strikes NW–SE as expected in the European context of Alpine compression, and (ii) a NE–SW trending extension accommodated by NW–SE normal faults. The geomorphological systems encountered in Normandy preferentially record differential vertical displacements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号